
pdf2table: A Method to Extract Table Information from
PDF Files

Burcu Yildiz, Katharina Kaiser, and Silvia Miksch

Institute of Software Technology & Interactive Systems
Vienna University of Technology, Vienna, Austria

{yildiz, kaiser, silvia}@asgaard.tuwien.ac.at

Abstract. Tables are a common structuring element in many documents, such as
PDF files. To reuse such tables, appropriate methods need to be develop, which
capture the structure and the content information. We have developed several
heuristics which together recognize and decompose tables in PDF files and store
the extracted data in a structured data format (XML) for easier reuse. Addition-
ally, we implemented a prototype, which gives the user the ability of making
adjustments on the extracted data. Our work shows that purely heuristic-based
approaches can achieve good results, especially for lucid tables.

1 Introduction

The amount of accessible data we are facing today makes it necessary to develop ef-
ficient Information Engineering concepts and tools to better process and use the data.
Information Engineering comprises such a wide dimension ofsub-areas that one can-
not expect that a single concept or tool can fit the needs of all[1]. One of these sub-areas
is the field of Information Extraction (IE). IE is the task of extracting relevant facts from
text and representing them in some useful form. The development of this field was influ-
enced and fostered by a series of Message Understanding Conferences (MUCs) starting
in 1987 which served as a platform for evaluating different IE projects developed by
different sites [2,3]. The field of IE can also be split into some sub-tasks.

One sub-task is the task of Table Extraction (TE) which is thesubject of this paper.
This task is important, because tables are among the most common means of presenting
and structuring data with a high information density. However, it is not an easy task,
because tables can be of varying formats. For example, some tables could have lines in
order to point out the cell boundaries, whereas others couldhave only white spaces to
achieve a table view. The only thing each table will certainly have is content.

Further, we concentrated only on PDF files as input files. Thisdata format is widely
known and used, because it allows users to create files that look the same on different
output devices, no matter in which environment they were created.

Extracting different kinds of data and information from whole PDF files is a field
of research itself. Various tools were developed to supportthe extraction process. A
comparison [4] showed that the tool with the most useful output for our purpose was
the pdftohtml1 tool developed by Gueorgui Ovtcharov and Rainer Dorsch. This tool

1 http://pdftohtml.sourceforge.net



returns all text elements (i.e., strings) in a PDF-file with their absolute coordinates in
the original file. Using this tool, our task became to extracttable information from
semi-structured text files utilizing their absolute coordinates.

2 Table Extraction

Table Extraction (TE) is the task of detecting and decomposing table information in a
document. This task attracted the attention of researchersbecause tables are one of the
most used elements to present and structure data and they should be extracted for reuse.

While human beings can easily recognize and understand tables, things are different
for computers, because tables do not have any identifying characteristic in common.
They can contain delimiters ranging from graphical boundary lines to point out the
boundaries and the separation between rows and cells, to only white spaces to achieve a
table view. Further, they can vary in terms of containing spanning rows and/or columns.
Another point that makes TE harder is that tables can containdifferent types of content,
such as text, figures, mathematical formulas, etc. [5] We hadto take all the explained
difficulties into account in developing our approach.

Our work is based on the data returned by thepdftohtml tool (refer Section 1). For
each text chunk in the PDF file it returns a text element in XML with the following
attributes:

– top = vertical distance from the top of the page
– left = horizontal distance from the left border of the page
– width = width of the text chunk
– height = height of the text chunk
– font = this attribute describes the size, family, and color of the text chunk

We restricted our work to utilize only these five attributes for extracting table infor-
mation and not, for example, graphical components like lines, etc. After applying the
pdftohtml tool, we had to extract table information from an XML document with text
elements describing the absolute position of a text chunk ina PDF file.

We have explored different kinds of tables according to their structure to develop
several heuristics. These heuristics can be grouped in two main categories: (1) heuristics
intended to recognize a table and (2) heuristics intended todecompose a table.

Table Recognition. This task deals with the problem of identifying a ”construct” as a
table. The level of difficulty of this task depends, among others, on the document
in which the table is embedded. As we deal with an XML documentwhich does
not mark-up tables, we have to identify a portion of text elements as a table only by
means of the knowledge of the absolute coordinates of the text elements.

Table Decomposition.After detecting a part of a file as a table, the next step is to de-
compose the table as close to the original as possible. This task includes the correct
identification of header elements, their spanning behavior(i.e., how many columns
or rows are spanned), the correct assigning of data cells to header elements, and so
on.



3 Our Approach

Our approach is based on heuristics, which we derived from comparing different kinds
of tables according their composition. We grouped our heuristics in tasks of table recog-
nition and table decomposition. First, we explain our preprocessing and then the heuris-
tics. All the algorithms are listed with a basic explanation. Afterwards, we give a coher-
ent example, which illustrates all the different steps.

To ease the understanding of our heuristics, we define some basic terms, which will
be used throughout the paper.

– Text: contains a string and five attributes (top, left, width, height, font)
– Line: contains text objects which are assumed to be on the same line in the original

file
– Single-Line: line object with only one text object
– Multi-Line: line object with more than one text object
– Multi-Line Block: set of continuous multi-line objects

Basically, we assume the input document as a single column document. By using
a user interface the user can actually tell the implemented prototype the number of
columns of the document to achieve better results.

3.1 Preprocessing

The pdftohtml tool returns text chunks and their absolute coordinates in the PDF file
in the same order as they were inserted into the original file.Because each author can
insert the text in the order she/he wants, you cannot rely only on the ordering of the text
elements to make decisions. To avoid such uncertainties we first sort all text elements
according to their top values.

Ascii Sign Ascii Sign Ascii Sign
048 0 050 2 052 4
049 1 051 3 053 5

Fig. 1. Example of a table in a PDF file

The original ordering of the text elements in Fig. 1 can have several forms. One
possible ordering could be: Ascii, Sign, Ascii, Sign, Ascii, Sign, 048, 0, 050, 2, and so
on. Depending on the author, another ordering could be: Ascii, 048, 049, Sign, 0, 1, and
so on. If we sort all the text elements with respect to their top-values we can be sure that
we always get the same ordering, no matter how the author has inserted the text chunks.
For Fig. 1 the sorted ordering is: Sign, Sign, Sign, Ascii, Ascii, Ascii, 048, 0, 050, and
so on.

After this sorting process we want to assign text objects that are on the same line to
a line object. Our heuristic for this task is described in Algorithm 1.



Algorithm 1. Merge text elements on the same line to line objects

for each Text t {
Line pl = last Line in the Line list
if (t.top or t.bottom lies between pl.top and pl.bottom) {

add t to pl;
actualize values of pl.top and pl.bottom;

} else {
create new Line and add t to the new Line;
set top and bottom values of the new Line;
add new Line to the Line list;

}
}

After applying Algorithm 1, we have all the lines in the PDF file in our line object
list. We can start with the table recognition task.

3.2 Table Recognition

In this task, we utilize the gained information from our pre-processing to identify the
tables in the document. Our basic assumption for recognizing tables is: ”Tables must
have more than one column”. This indicates that each multi-line object can be a data
row of a table and each multi-line block object can actually be a table. Based on these
assumptions we describe our table recognition heuristic inAlgorithm 2.

Algorithm 2. Classify single-line and multi-line objects and detect multi-line block objects

multi-modus = false;
for each Line line {

if (number of Text objects in line > 1) {
mark line as Multi-Line;
if (multi-modus == false) {

create new Multi-Line Block;
add new Multi-Line Block to Multi-Line Block list;
multi-modus = true;

} else {
Multi-Line Block mlb = last added Multi-Line Block

to the Multi-Line Block list;
add line to Lines in mlb;

}
} else

if (number of Text objects in line == 1) {
Text t = the Text in line;
Multi-Line Block mlb = last added Multi-Line Block

to the Multi-Line Block list;
if (t belongs to mlb)

add line to Line in mlb;
else // single-line

multi-modus = false;
}

}



After this first classification of line objects as single-line and multi-line objects and
detecting multi-line block objects we have generated a heuristic to merge multi-line
block objects that may belong to the same table. We selected athreshold value of five
and assume that if there are more than five single-line objects between two multi-line
block objects, than these multi-line block objects represent two distinct tables. Algo-
rithm 3 presents this heuristic.

Algorithm 3. Merge multi-line block objects which may belong to the same table

for each Multi-Line Block mlb {
p_mlb = previous Multi-Line Block in the Multi-Line Block list;
n_mlb = next Multi-Line Block in the Multi-Line Block list;
for each Line between mlb and p_mlb

try to merge Line to mlb;
if (number of Lines between mlb and p_mlb <=5 and mlb and

p_mlb on the same page) {
merge mlb and p_mlb;

}
for each Line between mlb and n_mlb

try to merge Line to mlb;
if (Line between mlb and n_mlb <=5 and mlb and

n_mlb on the same page) {
merge mlb and n_mlb;

}
}

After the merging process we have all multi-line block objects that can be a table.
We are not taking multi-line block objects with less than tworows into account for
further processing. The next step is to decompose the remaining multi-line block objects
to tables.

3.3 Table Decomposition

Having all possible tables detected we can concentrate on decomposing the information
in these multi-line block objects. Due to the fact that each text element will be in (at
least) one column, we simplify our decomposition task and try to find the appropriate
column for each text element in a multi-line block object (refer Algorithm 5). We start
with no column at hand. For the first text element there will bea new column created.
After that, for each text element the boundaries of the text element will be compared
with the existing columns’ boundaries. According to that, if a text elements’ horizontal
boundaries fit into a columns’ boundaries it will be added to this column, if not, a
new column will be created and the text element will be added into it. If more than
one text element in a line falls into the boundaries of a column the spanning will be
increased. After adding a text element to a column, the boundary values of the column
are actualized.

Our heuristic for this task is described in Algorithm 4.



Algorithm 4. Decompose the columns of each multi-line block object

for each Multi-Line Block mlb {
for each Line line in mlb {

for each Text t in line {
find appropriate column for t;
if (found)

add t to cells in column;
else {

create new column;
add column at the appropriate position in the column list;

}
}

}
create table with all these columns;

}

Finding the appropriate column for a text object requires a heuristic itself, which is
described by Algorithm 5.

Algorithm 5. Assign text element to a column

input: Text t
for each column c {

if (t overlaps c or c overlaps t)
return c;

else
if (t in c or c in t)

return c;
else

return null;
}

After all these processes we have a list of columns which together compose the
tables. Now, the only thing to do is to merge cells with the same content to one cell with
a greater spanning value.

3.4 An Example

In the following we will give an example to illustrate several steps of our approach.
Assume that we have as input the PDF file with a page like in Fig.2. Of course, the

PDF file contains not only the table but also text paragraphs,footnotes, etc., too.
After getting the results from thepdftohtml tool we can go on with our approach.

Our first step is to sort all the text elements in respect to their top attributes. Assume
that we have already identified the text elements before the table and let us begin with
the text elements in the table (refer Fig. 3).

In Fig. 3, after the sorting process we have the following ordering:
”Median value among families”, ”Families having stock holdings”, ”with holdings”,

”direct or indirect”, ”Family”, ”(thousands of 1998 dollars)”, ”characteristic”, ”1989”,
”1992”, ”1995”, ”1998”, ”1989”, and so on.



Fig. 2.Example of a complex table in a PDF file

Now, Algorithm 1 is applied to create the line objects. Basedon the ordering the
first text element that is saved in a line object is ”Median value among families”. Thus,
a new line object is created and the top and bottom values are actualized in respect to
the added text element. The next one is ”Families having stock holdings” and we must
look whether we can put this text in an existing line object ornot. The first dashed line
(see Fig. 3) marks the bottom of the line object we just created. As you can see the
current text elements’ top value is between the top and the bottom value of our first line
object and thus can be added to this line. After adding, the line objects’ top and bottom
values are actualized. This procedure is applied until all text objects have been found
in a line object (the last text object in our example is ”1989”). The text elements in
this line object are still sorted according to their top values. This ordering is of no use
anymore, because we want to gain the text chunks that semantically belong together.
For example, we want ”Family” and ”characteristic” merged.Thus, we next sort the
text elements in the line object according to their left values. After that we have the
wanted ordering, thus ”Family characteristic”, ”Familieshaving stock holdings direct
or indirect”, and so on (refer Fig. 3).



Fig. 3. Illustrating the ordering in which the text elements are added into line objects

After building all line objects in this page we have to classify all line objects as
single-line object or multi-line object. Algorithm 2 markssuccessive multi-line objects
as multi-line block objects. Because we have no other multi-line block object in this
example we do not have to merge anything (refer Algorithm 3).

The next step is to create columns and assign the text objectsto their corresponding
columns. This step is done by Algorithm 4 and Algorithm 5. Forour first text object in
the first line object (”Family characteristic”) we have to build a new column. For all the
text objects in the line objects we have to look whether thereexists a column to which
that text object can be assigned. If so, we simply add the textobject to this column. If
not, we create a new column and add this text object to the new one. In both cases, we
actualize the columns’ horizontal boundaries according tothe new added text element.

A text object can be assigned to a column if one of the following four possibilities
appears (refer Fig. 4):

1. The text is positioned completely within the horizontal boundaries of the column
2. Left border of the text is positioned in the horizontal column boundaries
3. Right border of the text is positioned in the horizontal boundaries of the column
4. The text spans the horizontal boundaries of the column

After this procedure we have a table consisting of more than one column. For the
first five columns of our example in Fig. 2 we get the resulting columns presented in
Table. 1.

Finally, we have to identify neighbor cells with the same content and merge them.
In our case the four cells with the content ”Families having stock holding direct or
indirect” are merged into one single cell with a column spanning of four. These are the
main steps of our approach to extract table information fromPDF files.

3.5 Limitations

Because of the complexity of the task and the used heuristics, which cannot cover all
possible table structures, one cannot assume that the approach always returns correct
results. For example, our approach cannot distinguish between hidden tables (i.e., tables
that are not labeled as such in the original file) and real tables. Further, tables that



Fig. 4. The four possibilities for assigning a text object to a column

Table 1.Columns after applying Algorithm 4.

Family Families Families Families Families
characteristic having having having having

stock stock stock stock
holding holding holding holding
direct or direct or direct or direct or
indirect indirect indirect indirect

Null 1989 1992 1995 1998
All Families 31.6 36.7 40.4 48.8
...
...

are positioned vertically on a page cannot be captured. There are also several possible
errors, for example, text chunks that do not belong togetherare merged, multi-line block
objects that belong together are not merged, data cells are assigned to wrong columns,
and so forth. It is also possible that areas that are not tables are identified as such. This
is the case, for example, with bulleted lists, etc.

To overcome these limitations we also implemented a graphical user interface which
gives the user the ability of making adjustments on the extracted data. The user can
make adjustments on cell level (e.g. delete cells, merge cells, edit content of cell, etc.)
or on table level (e.g. delete table, merge tables, delete/insert rows or columns).

The main limitation of the tool is that it is based on the results of thepdftohtml tool.
If this tool returns wrong information or no information at all, our approach cannot be
applied. For example, PDF files sometimes contain only the image of a table and not
text chunks which are inserted by an author. In such a case, the pdftohtml returns no
useful information. We stated this limitation as the main limitation, because the user
cannot do anything about it. The graphical user interface will not help, either.



3.6 Evaluation

The evaluation of an Information Extraction System is a non-trivial issue. Therefore, we
can say that the MUCs’ scoring program represented an important first step in the right
direction [6]. These conferences served as an evaluation platform where systems from
different sites were evaluated by using different measures. Over the years the recall
and precision measures established themselves and are widely accepted as a means for
giving evidence about a system’s performance. Currently, some research goes in the di-
rection of finding new and proper measures for evaluating table-processing approaches
[7].

However, it is hard to predict how good a measure reflects the real situation for a
current approach. Our approach, for example, consists of several iterative steps and a
failure in the first step would affect the end result to an unpredictable extent. But it
would be very hard to evaluate the performance of each heuristic separately. Thus, we
decided to evaluate the end result using the mentioned most established measures in the
IE community, namely the recall and precision measures [2].

We evaluated the table recognition and decomposition task separately and trans-
formed the formula for recall and precision according to thetasks. The formula for the
table recognition task is as follows:

Recall =

number of correctly identified tables

number of tables in the document

Precision =

number of correctly identified tables

number of identified tables

The formula for recall and precision for the table recognition task is as follows:

Recall =

number of correctly assigned data cells

number of data cells in the original table

Precision =

number of correctly assigned data cells

number of extracted data cells

To determine how well our approach performs on the task of table recognition and
decomposition we implemented our approach and evaluated itwith several PDF files
containing various tables. For that purpose, we used two test corpora. One consists of
documents with lucid (or unsophisticated) tables and the other consists of documents
with complex tables. The documents do not only contain tables, but also text para-
graphs, graphics, etc.

Different application fields are using different kinds of tables. But within a particular
field the structure of the tables are quite similar. If we would test our approach on such
a data set, the evaluation results would not reflect the real performance of our approach.
To overcome this problem, we decided to generate our test corpora randomly with PDF
files available on the World Wide Web. Most of the PDF files contain only one table
and they came from various fields like research, sports, statistics, etc. They are also not
restricted to be from a specific domain or language.

Tables 2 and 3 show the evaluation results of our approach forthe table recognition
and table decomposition tasks.



The run-time of the heuristics increase with the number of pages in a PDF file. In
order to achieve faster results the user should start the tool for only the pages of interest.

Table 2.Evaluation results of the table recognition task

Amount of samples Recall Precision

Lucid tables 50 0.84 0.97

Complex tables 100 0.92 0.95

Table 3.Evaluation results of the table decomposition task

Amount of samples Recall Precision

Lucid tables 50 0.88 0.97

Complex tables 100 0.81 0.83

4 Related Work

The Information Engineering community has realized the importance of TE earlier.
Some approaches handle images of documents as input and therefore merely focus on
layout components (table boundaries, cell boundaries, etc.) to detect and decompose
tables. Other approaches, on the other hand, have to deal with unstructured or semi-
structured text where only little or no information about the layout is given. In such
cases, the developers try to extract the tables by using parameters like spacing, etc.

We can categorize the existing approaches in three main categories [8]:

– Predefined layout-based approach:In this approach there exist several templates
for possible table structures. The input documents are scanned and portions that fit
a template are identified as tables. The limitation is that one cannot define so many
templates so that all possible table structures are coveredwith them.

– Heuristic-based approach:This approach makes use of a set of rules, which are
created to make decisions.

– Statistical or optimization-based approach:This approach uses statistical mea-
sures obtained by offline training. The estimated parameters are then used for decision-
making.

Tupaj and colleagues [9] focus on examining a document imageand its content. In
their algorithm, first the document is segmented and analyzed by means of image pro-
cessing techniques in order to detect potential table areas. These parts are then passed



to an OCR engine that extracts the text. Finally, the extracted text is analyzed and table
components are isolated. Tupaj and colleagues used two kinds of tables for the testing
process (technical tables, financial tables). They show that their approach gains different
results for the two kinds of table classes.

Ng and colleagues [10] apply Machine Learning techniques togain a domain in-
dependent and reliable system. They developed an approach that handles plain text in
ASCII characters as input. Their learning method uses purely surface features like the
relative locations of characters in a line and across lines,etc. They split their task into
three sub-tasks: recognizing table boundary, column, and row, in that order. Note that
they only focus on detecting tables, columns, and rows and not on the content.

Ramel and colleagues [5] developed a method for detection and extraction of the
graphic lines. To deal also with tables with no or little graphic marks they utilize the
regularities of the text elements alone. They describe their approach as a top-down study
of regularities, whereas first the global configuration of the blocks of text are examined,
then more local characteristics (alignment, spacing) are taken into account, and finally
the lines of text are studied.

Pinto and colleagues [11] presented a model of table extraction that utilizes both
content and layout of tables by using conditional random fields (CRFs). CRFs are undi-
rected graph models that can be used to calculate conditional probability of values on
designated input nodes. Pinto and colleagues first label each line of a document with a
tag (non-extraction label, header label, data row label, caption label). Then they describe
features used by a heuristic table extractor. They used CRFsbecause CRFs support the
use of many rich and overlapping layout and language features. After a training phase
they tested their dataset and achieved good results. Though, the current state of their
model can only locate labels and tag lines but knows nothing about the columns and
cannot distinguish between data cells and header cells.

Although there is some existing work about extraction from PDF files, there is no
special focus on the extraction of tables. The full version of Adobe Acrobat2 has a
table extraction feature but it can only extract lucid tables correctly and this only after
the user marks the table. The other existing approaches werenot applicable for our
purposes, because they use to some extent graphical delimiters for the extraction. The
usedpdftohtml tool returns only text elements with some attributes and no graphical
components at all. Further, we wanted to preserve generality in the sense of not being
limited to a specific domain, language, or a set of table models etc. Thus, we decided to
develop a heuristic-based approach that works only with thefew attributes of the tool
and nothing else.

5 Conclusion

This paper has presented a method for extracting table information by utilizing only the
absolute position of text elements in a file, concretely in PDF files. Further, a prototype
was generated in order to evaluate the performance of the method. Experiments on
several PDF documents with 150 tables demonstrated our results.

2 http://www.adobe.com



Based on our evaluation results we can say that our approach performs very well on
the table recognition task for lucid and complex tables. Possible errors are an unintended
merge of two adjacent tables or erroneous table splits.

Regarding the table decomposition task we can say that our approach works very
well on lucid tables. Anyhow, the performance and recall values on complex tables are
also fairly good. The difference between these results camemainly from the appearance
of multi-line cells in complex tables. To decide whether twocells have to be merged or
not requires some amount of natural language understandingand our approach does not
handle any language-specific features. Therefore, we can only make decisions based on
the distance between two cells, which is not always reliable. It is possible that two cells
that have to be merged are not merged by the approach or that two adjacent cells are
falsely merged.

Our approach to the extraction of tables in PDF files, is domain and language inde-
pendent. Future work may involve using more statistical techniques for utilizing regu-
larities in tables in order to achieve better results. Such techniques could, for example,
help to avoid false-positives in both of the tasks.

References

1. Miller, R.L.: Information engineering: A balanced approach to information systems require-
ments analysis and design. In: Proceedings of the IEEE National Aerospace and Electronics
Conference. (1995) 672–679

2. Appelt, D.E.: Introduction to information extraction. AI Communications12 (1999) 161–
172

3. Riloff, E.: Information extraction as a stepping stone toward story understanding. In Ram,
A., Moorman, K., eds.: Understanding Language Understanding: Computational Models of
Reading. MIT Press (1999)

4. Yildiz, B.: Information extraction – utilizing table patterns. Master’s thesis, Vienna Univer-
sity of Technology (2004)

5. Ramel, J.Y., Crucianu, M., Vincent, N., Faure, C.: Detection, extraction and representation
of tables. In: Proceedings of the Seventh International Conference on Document Analysis
and Recognition, Washington DC., IEEE Computer Society (2003) 374–378

6. Lehnert, W., Cardie, C., Fisher, D., McCarthy, J., Riloff, E., Soderland, S.: Evaluating an
Information Extraction system. Journal of Integrated Computer-Aided Engineering1 (1994)

7. Hu, J., Kashi, R., D., L., G., W.: Evaluating the performance of table processing algorithms.
International Journal on Document Analysis and Recognition 4 (2002)

8. Wang, Y.: Document Analysis: Table Structure Understanding and Zone Content Classifica-
tion. PhD thesis, Washington University (2002)

9. Tupaj, S., Shi, Z., Chang, C., Alam, H.: Extracting tabular information from text files. Eecs,
Tufts University, Medford (1996)

10. Ng, H., Lim, C., Koo, J.: Learning to recognize tables in free text. In: Proceedings of the
37th Conference on Association for Computational Linguistics. (1999) 443–450

11. Pinto, D., McCallum, A., Wei, X., Bruce, W.: Table extraction using conditional random
fields. In: Proceedings of the 26th ACM SIGIR. (2003)


