pdf2table: A Method to Extract Table Information from
PDF Files

Burcu Yildiz, Katharina Kaiser, and Silvia Miksch

Institute of Software Technology & Interactive Systems
Vienna University of Technology, Vienna, Austria
{yildiz, kaiser, silvia}@sgaard.tuw en.ac. at

Abstract. Tables are a common structuring element in many documerth,as
PDF files. To reuse such tables, appropriate methods neezidevelop, which
capture the structure and the content information. We haweldped several
heuristics which together recognize and decompose tabBF files and store
the extracted data in a structured data format (XML) for eatuse. Addition-
ally, we implemented a prototype, which gives the user thétyalof making
adjustments on the extracted data. Our work shows thatyphealristic-based
approaches can achieve good results, especially for labids.

1 Introduction

The amount of accessible data we are facing today makeseétssary to develop ef-
ficient Information Engineering concepts and tools to bgitecess and use the data.
Information Engineering comprises such a wide dimensiosubfareas that one can-
not expect that a single concept or tool can fit the needs ffjalDne of these sub-areas
is the field of Information Extraction (IE). IE is the task ofteacting relevant facts from
text and representing them in some useful form. The devedopof this field was influ-
enced and fostered by a series of Message Understandingr@onés (MUCSs) starting
in 1987 which served as a platform for evaluating differdhiplojects developed by
different sites [2,3]. The field of IE can also be split intarsosub-tasks.

One sub-task is the task of Table Extraction (TE) which isstligect of this paper.
This task is important, because tables are among the moshoammeans of presenting
and structuring data with a high information density. Hoam\t is not an easy task,
because tables can be of varying formats. For example, saestcould have lines in
order to point out the cell boundaries, whereas others doave only white spaces to
achieve a table view. The only thing each table will certahdve is content.

Further, we concentrated only on PDF files as input files. d@ata format is widely
known and used, because it allows users to create files thlatihe same on different
output devices, no matter in which environment they weratei:

Extracting different kinds of data and information from vda&DF files is a field
of research itself. Various tools were developed to supfhartextraction process. A
comparison [4] showed that the tool with the most useful oufpr our purpose was
the pdftohtml® tool developed by Gueorgui Ovtcharov and Rainer Dorschs Tl

! http://pdftohtml.sourceforge.net

returns all text elements (i.e., strings) in a PDF-file whkit absolute coordinates in
the original file. Using this tool, our task became to extratile information from
semi-structured text files utilizing their absolute cooades.

2 Table Extraction

Table Extraction (TE) is the task of detecting and decommptable information in a
document. This task attracted the attention of researdiemause tables are one of the
most used elements to present and structure data and they sleoextracted for reuse.

While human beings can easily recognize and understanektahings are different
for computers, because tables do not have any identifyiagacheristic in common.
They can contain delimiters ranging from graphical boupdares to point out the
boundaries and the separation between rows and cells,tovbiite spaces to achieve a
table view. Further, they can vary in terms of containingspag rows and/or columns.
Another point that makes TE harder is that tables can codtfigrent types of content,
such as text, figures, mathematical formulas, etc. [5] Wetbadke all the explained
difficulties into account in developing our approach.

Our work is based on the data returned by péohtml tool (refer Section 1). For
each text chunk in the PDF file it returns a text element in XMithvthe following
attributes:

— top = vertical distance from the top of the page

— left = horizontal distance from the left border of the page

— width = width of the text chunk

— height = height of the text chunk

— font = this attribute describes the size, family, and cofdhe text chunk

We restricted our work to utilize only these five attributesdxtracting table infor-
mation and not, for example, graphical components likeslimgéc. After applying the
pdftohtml tool, we had to extract table information from an XML docurhefith text
elements describing the absolute position of a text chuskRIDF file.

We have explored different kinds of tables according torth&iucture to develop
several heuristics. These heuristics can be grouped in &io categories: (1) heuristics
intended to recognize a table and (2) heuristics intenddét¢ompose a table.

Table Recognition. This task deals with the problem of identifying a "consttuag a
table. The level of difficulty of this task depends, amongeosh on the document
in which the table is embedded. As we deal with an XML docunwvenith does
not mark-up tables, we have to identify a portion of text edais as a table only by
means of the knowledge of the absolute coordinates of thekements.

Table Decomposition. After detecting a part of a file as a table, the next step is to de
compose the table as close to the original as possible. d$kdgnicludes the correct
identification of header elements, their spanning behgumt how many columns
or rows are spanned), the correct assigning of data cellsaddr elements, and so
on.

3 Our Approach

Our approach is based on heuristics, which we derived frampewing different kinds
of tables according their composition. We grouped our lsigs in tasks of table recog-
nition and table decomposition. First, we explain our poepssing and then the heuris-
tics. All the algorithms are listed with a basic explanatiafierwards, we give a coher-
ent example, which illustrates all the different steps.

To ease the understanding of our heuristics, we define sosieteams, which will
be used throughout the paper.

— Text: contains a string and five attributes (top, left, wjdthight, font)

— Line: contains text objects which are assumed to be on the fiamin the original
file

— Single-Line: line object with only one text object

— Multi-Line: line object with more than one text object

— Multi-Line Block: set of continuous multi-line objects

Basically, we assume the input document as a single coluroardent. By using
a user interface the user can actually tell the implementetbtype the number of
columns of the document to achieve better results.

3.1 Preprocessing

The pdftohtml tool returns text chunks and their absolute coordinatekénRDF file
in the same order as they were inserted into the originalBil&ause each author can
insert the text in the order she/he wants, you cannot rely @mthe ordering of the text
elements to make decisions. To avoid such uncertaintiesrstesfirt all text elements
according to their top values.

Ascii SIign Ascii SIign Asci Sign
048 0 050 2 052 4
049 1 051 3 053 5

Fig. 1. Example of a table in a PDF file

The original ordering of the text elements in Fig. 1 can hawesl forms. One
possible ordering could be: Ascii, Sign, Ascii, Sign, As8ign, 048, 0, 050, 2, and so
on. Depending on the author, another ordering could bei A®t8, 049, Sign, 0, 1, and
so on. If we sort all the text elements with respect to theirtalues we can be sure that
we always get the same ordering, no matter how the authonkagéd the text chunks.
For Fig. 1 the sorted ordering is: Sign, Sign, Sign, AsciicilAscii, 048, 0, 050, and
SO on.

After this sorting process we want to assign text objectsah@on the same line to
a line object. Our heuristic for this task is described ingklthm 1.

Algorithm 1. Merge text elements on the same line to line objects

for each Text t {

Line pl =last Line in the Line list

if (t.top or t.bottomlies between pl.top and pl.bottom ({
add t to pl;
actual i ze values of pl.top and pl.bottom

} else {

create new Line and add t to the new Line;
set top and bottom val ues of the new Line;
add new Line to the Line |ist;

After applying Algorithm 1, we have all the lines in the PDFefih our line object
list. We can start with the table recognition task.

3.2 Table Recognition

In this task, we utilize the gained information from our gm@cessing to identify the
tables in the document. Our basic assumption for recogmiahles is: "Tables must
have more than one column”. This indicates that each muki-bbject can be a data
row of a table and each multi-line block object can actuadlyaltable. Based on these
assumptions we describe our table recognition heuristiddorithm 2.

Algorithm 2. Classify single-line and multi-line objects and detect multi-line block objects

mul ti - nbdus = fal se;
for each Line line {
if (nunber of Text objects inline > 1) {
mark |ine as Ml ti-Line;
if (multi-nodus == false) {
create new Multi-Line Block;
add new Multi-Line Block to Miulti-Line Block |ist;
mul ti -nmodus = true;
} else {
Multi-Line Block mMb = | ast added Multi-Line Bl ock
to the Multi-Line Block list;
add line to Lines in nlb;

}
} else
if (nunber of Text objects in line == 1) {
Text t = the Text in |line;
Multi-Line Block mMb = last added Multi-Line Bl ock
to the Miulti-Line Block list;
if (t belongs to mb)
add line to Line in nlb;
else // single-line
mul ti - nodus = fal se;
}

After this first classification of line objects as singlediand multi-line objects and
detecting multi-line block objects we have generated aiktito merge multi-line
block objects that may belong to the same table. We seledteetshold value of five
and assume that if there are more than five single-line abjestiveen two multi-line
block objects, than these multi-line block objects repné$eo distinct tables. Algo-
rithm 3 presents this heuristic.

Algorithm 3. Merge multi-line block objects which may belong to the same table

for each Multi-Line Block mb {

p_mb = previous Milti-Line Block in the Miulti-Line Block Iist;

nmb = next Multi-Line Block in the Multi-Line Block list;

for each Line between mb and p_nlb
try to merge Line to nmb;

if (nunber of Lines between mb and p_mb <=5 and m b and
p_mb on the sane page) {
nerge mb and p_n b;

}

for each Line between mb and n_nlb
try to merge Line to nmb;

if (Line between mb and n_mb <=5 and m b and
n_mb on the sane page) {
nmerge mb and n_mn b;

After the merging process we have all multi-line block olgabat can be a table.
We are not taking multi-line block objects with less than twwvs into account for
further processing. The next step is to decompose the rémgairulti-line block objects
to tables.

3.3 Table Decomposition

Having all possible tables detected we can concentrateamagosing the information
in these multi-line block objects. Due to the fact that eaott €lement will be in (at
least) one column, we simplify our decomposition task agddrfind the appropriate
column for each text element in a multi-line block objectéreAlgorithm 5). We start

with no column at hand. For the first text element there wilab@ew column created.
After that, for each text element the boundaries of the texthent will be compared
with the existing columns’ boundaries. According to thia, iext elements’ horizontal
boundaries fit into a columns’ boundaries it will be addedhis column, if not, a

new column will be created and the text element will be adad it. If more than

one text element in a line falls into the boundaries of a caluhe spanning will be
increased. After adding a text element to a column, the baynehlues of the column
are actualized.

Our heuristic for this task is described in Algorithm 4.

Algorithm 4. Decompose the columns of each multi-line block object

for each Miulti-Line Block mb {
for each Line line in mb {
for each Text t in line {
find appropriate colum for t;
i f (found)
add t to cells in colum,;
el se {
create new col um;
add colum at the appropriate position in the colum Iist;

}
}

create table with all these col unms;

Finding the appropriate column for a text object requiresaristic itself, which is
described by Algorithm 5.

Algorithm 5. Assign text element to a column

i nput: Text t
for each colum c {
if (t overlaps c¢c or c overlaps t)
return c;
el se
if (tincorcint)
return c;
el se
return null;

After all these processes we have a list of columns whichthegecompose the
tables. Now, the only thing to do is to merge cells with the s@ontent to one cell with
a greater spanning value.

3.4 An Example

In the following we will give an example to illustrate seviesteps of our approach.

Assume that we have as input the PDF file with a page like inZEi@f course, the
PDF file contains not only the table but also text paragrdiolosnotes, etc., too.

After getting the results from thedftohtml tool we can go on with our approach.
Ouir first step is to sort all the text elements in respect ta toe attributes. Assume
that we have already identified the text elements beforedtble and let us begin with
the text elements in the table (refer Fig. 3).

In Fig. 3, after the sorting process we have the followingeoirty:

"Median value among families”, "Families having stock hialgs”, "with holdings”,
"direct or indirect”, "Family”, "(thousands of 1998 dolls)’, "characteristic”, "1989",
71992”,"1995", "1998", "1989", and so on.

Results from the 1998 Survey of Consumer Finances 15

6. Direct and indirect farmily holdings of stock, by selected characteristics of families, 1989, 1992, 1995, and 1998 surveys

Percent except as noted

Families having stock holdings, e (e e L) Stock holdings as sher of
Femily direet or indireat! il 15 of 1998 dollars) group’s financiel asscts
chamdenstic

1989 | 1992 | 1995 | 1998 1989 ‘ 1992 | 1995 | 1998 1989 | 1992 | 1995 | 1998
Al Eamibies ..o 314 3.7 14 185 10.3 1%0 154 250 278 357 404 59
Income (1998 dollars,
Less than 10,000 + 6.8 54 17 * 52 32 40 + 159 129 4.8
1000024999 ... 12T 17.8 222 47 6.4 46 6.4 9.0 113 153 167 1.5
2500049999 ... 315 40.2 454 527 6.0 72 3.5 11.5 169 3.7 jna 351
5000099999| 515 62.5 65.4 4.3 10.2 15.4 236 357 232 335 198 48.8
100,000 or mere[BLE 8.3 216 91.0 535 719 B5.5 1500 353 40.2 46.4 .0
Age of head (yeors)
Lessthan 35| 224 283 366 0.7 i3 4.0 5.4 70 0.2 4.8 72 .5

388 42.4 46.4 565 (1] 11 10.6 200 29.2 Lo 95 547
41.8 46.4 489 5B6 167 17.1 276 380 335 40.6 429 55.7
362 453 40.0 558 134 285 38 47.0 276 373 4.4 583
26.7 30.2 344 416 253 183 36.1 360 26.0 L6 158 513
158 257 278 2.4 3la 285 1.2 0.0 250 254 198 487

Noti. See note to table 1.
1. Indirect holdings are those in mutual funds, retirement accounts, and other managed assets.
* Ten or fewer observations

1995 to 89.9 percent in 1998, Declines were spread of $100,000 or more. However, between the 1995
fairly evenly over most demographic groups except and 1998 surveys, the growth of leasing among fami-
the income and net worth groups, in which the lies in that income group had leveled off, while it had
decreases were largest for families at the lower ends picked up among families with incomes below
of the scales. The median holding of nonfinancial $50,000.

Fig. 2. Example of a complex table in a PDF file

Now, Algorithm 1 is applied to create the line objects. Basadhe ordering the
first text element that is saved in a line object is "Mediaruesedmong families”. Thus,
a new line object is created and the top and bottom valuescawalezed in respect to
the added text element. The next one is "Families havingkdtotdings” and we must
look whether we can put this text in an existing line objeanhot. The first dashed line
(see Fig. 3) marks the bottom of the line object we just cokats you can see the
current text elements’ top value is between the top and tktertnosalue of our first line
object and thus can be added to this line. After adding, treedbjects’ top and bottom
values are actualized. This procedure is applied untilexi bbjects have been found
in a line object (the last text object in our example is "198The text elements in
this line object are still sorted according to their top wsuThis ordering is of no use
anymore, because we want to gain the text chunks that seratythelong together.
For example, we want "Family” and "characteristic’ merg@&tius, we next sort the
text elements in the line object according to their left esluAfter that we have the
wanted ordering, thus "Family characteristic”, "Familiesving stock holdings direct
or indirect”, and so on (refer Fig. 3).

....... Median value. among families ...

i Shs s e e

_______ i o Aousands: of 1998 ot

tliaracteristic

1989 1992 1995 1998 1989 1992 1993 1998

TN Tesmini e e — 3.6 36.7 404 488 10.8 12.0 154 250
Income (1998 dollars)

Less than 10,000 # 6.8 54 1.7 # 6.2 3.2 4.0

Fig. 3. lllustrating the ordering in which the text elements areaatlimhto line objects

After building all line objects in this page we have to clagsill line objects as
single-line object or multi-line object. Algorithm 2 markaccessive multi-line objects
as multi-line block objects. Because we have no other nlinki-block object in this
example we do not have to merge anything (refer Algorithm 3).

The next step is to create columns and assign the text olbgetttsir corresponding
columns. This step is done by Algorithm 4 and Algorithm 5. Baor first text object in
the first line object ("Family characteristic”) we have taldwa new column. For all the
text objects in the line objects we have to look whether tlegists a column to which
that text object can be assigned. If so, we simply add thedigject to this column. If
not, we create a new column and add this text object to the mewlo both cases, we
actualize the columns’ horizontal boundaries accordinpémew added text element.

A text object can be assigned to a column if one of the follgfisur possibilities
appears (refer Fig. 4):

1. The textis positioned completely within the horizontalibhdaries of the column
2. Left border of the text is positioned in the horizontallwoh boundaries

3. Right border of the text is positioned in the horizontalibdaries of the column
4. The text spans the horizontal boundaries of the column

After this procedure we have a table consisting of more th@anlumn. For the
first five columns of our example in Fig. 2 we get the resultioumns presented in
Table. 1.

Finally, we have to identify neighbor cells with the sameteoih and merge them.
In our case the four cells with the content "Families havitack holding direct or
indirect” are merged into one single cell with a column spagmf four. These are the
main steps of our approach to extract table information fRiD# files.

3.5 Limitations

Because of the complexity of the task and the used heuristitigh cannot cover all

possible table structures, one cannot assume that theamppatways returns correct
results. For example, our approach cannot distinguishdmtkidden tables (i.e., tables
that are not labeled as such in the original file) and realesabFurther, tables that

Vertical column boundaries Vertical column boundaries after
before actualizing actualizing with new text
r—& *r—o
 I— ’ /1
 r—— r—
—/— ’ | I—
 r— r— o
| E— ’ | E—
r—o r— o
| Tam]

Fig. 4. The four possibilities for assigning a text object to a calum

Table 1. Columns after applying Algorithm 4.

Family Families |[Families |Families |Families
characteristic |having |having |having |having
stock stock stock stock
holding |holding |holding |holding
direct or |direct or |director |director
indirect |indirect |indirect |indirect
Null 1989 1992 1995 1998
All Families |31.6 36.7 40.4 48.8

are positioned vertically on a page cannot be captured eTéer also several possible
errors, for example, text chunks that do not belong togetteemerged, multi-line block

objects that belong together are not merged, data cellssaigneed to wrong columns,
and so forth. It is also possible that areas that are notsakeidentified as such. This
is the case, for example, with bulleted lists, etc.

To overcome these limitations we also implemented a graphser interface which
gives the user the ability of making adjustments on the eteéchdata. The user can
make adjustments on cell level (e.g. delete cells, merdg, @it content of cell, etc.)
or on table level (e.g. delete table, merge tables, dehsterti rows or columns).

The main limitation of the tool is that it is based on the résaf thepdftohtml tool.
If this tool returns wrong information or no information dk, @ur approach cannot be
applied. For example, PDF files sometimes contain only thregerof a table and not
text chunks which are inserted by an author. In such a casgdftohtml returns no
useful information. We stated this limitation as the mamitation, because the user
cannot do anything about it. The graphical user interfadienot help, either.

3.6 Evaluation

The evaluation of an Information Extraction System is a tronal issue. Therefore, we
can say that the MUCSs'’ scoring program represented an impifitst step in the right
direction [6]. These conferences served as an evaluataifopin where systems from
different sites were evaluated by using different measu@a®r the years the recall
and precision measures established themselves and arlg aidepted as a means for
giving evidence about a system’s performance. Currerdtpesresearch goes in the di-
rection of finding new and proper measures for evaluatinigtpbocessing approaches
[7].

However, it is hard to predict how good a measure reflectsahksituation for a
current approach. Our approach, for example, consistsvefrakiterative steps and a
failure in the first step would affect the end result to an edpstable extent. But it
would be very hard to evaluate the performance of each hewseparately. Thus, we
decided to evaluate the end result using the mentioned retadilshed measures in the
IE community, namely the recall and precision measures [2].

We evaluated the table recognition and decomposition tapkrately and trans-
formed the formula for recall and precision according totdsks. The formula for the
table recognition task is as follows:

number of correctly identi fied tables

Recall =
number of tables in the document

number of correctly identi fied tables

Precision =
number of identi fied tables

The formula for recall and precision for the table recogmitiask is as follows:

Recall — number of correctly assigned data cells

number of data cells in the original table

. number of correctly assigned data cells
Precision = / Y g

number of extracted data cells

To determine how well our approach performs on the task détadrognition and
decomposition we implemented our approach and evaluateithitseveral PDF files
containing various tables. For that purpose, we used twatgpora. One consists of
documents with lucid (or unsophisticated) tables and therotonsists of documents
with complex tables. The documents do not only contain glilet also text para-
graphs, graphics, etc.

Different application fields are using different kinds dftes. But within a particular
field the structure of the tables are quite similar. If we vabiglst our approach on such
a data set, the evaluation results would not reflect the eébpnance of our approach.
To overcome this problem, we decided to generate our tegpcarandomly with PDF
files available on the World Wide Web. Most of the PDF files eiminly one table
and they came from various fields like research, sportssttat etc. They are also not
restricted to be from a specific domain or language.

Tables 2 and 3 show the evaluation results of our approadchéamble recognition
and table decomposition tasks.

The run-time of the heuristics increase with the number gfegan a PDF file. In
order to achieve faster results the user should start théatioanly the pages of interest.

Table 2. Evaluation results of the table recognition task

Amount of samples Recall| Precision
Lucid tables 50 0.84 0.97
Complex tables 100 0.92 0.95

Table 3. Evaluation results of the table decomposition task

Amount of samples Recall| Precision
Lucid tables 50 0.88 0.97
Complex tables 100 0.81 0.83

4 Related Work

The Information Engineering community has realized thedrtgnce of TE earlier.
Some approaches handle images of documents as input aetbtieemerely focus on
layout components (table boundaries, cell boundaries, Etadetect and decompose
tables. Other approaches, on the other hand, have to déaunétructured or semi-
structured text where only little or no information aboug tlayout is given. In such
cases, the developers try to extract the tables by usingredeas like spacing, etc.

We can categorize the existing approaches in three maigaéds [8]:

— Predefined layout-based approachin this approach there exist several templates
for possible table structures. The input documents arenschand portions that fit
a template are identified as tables. The limitation is that@annot define so many
templates so that all possible table structures are cowetadhem.

— Heuristic-based approach:This approach makes use of a set of rules, which are
created to make decisions.

— Statistical or optimization-based approach:This approach uses statistical mea-
sures obtained by offline training. The estimated pararsaterthen used for decision-
making.

Tupaj and colleagues [9] focus on examining a document inaagats content. In
their algorithm, first the document is segmented and andlpgemeans of image pro-
cessing techniques in order to detect potential table afdeese parts are then passed

to an OCR engine that extracts the text. Finally, the ex¢at#xt is analyzed and table
components are isolated. Tupaj and colleagues used tws kintables for the testing

process (technical tables, financial tables). They shottfile& approach gains different
results for the two kinds of table classes.

Ng and colleagues [10] apply Machine Learning techniquegaio a domain in-
dependent and reliable system. They developed an approachandles plain text in
ASCII characters as input. Their learning method uses puwafface features like the
relative locations of characters in a line and across lia&s, They split their task into
three sub-tasks: recognizing table boundary, column, awdin that order. Note that
they only focus on detecting tables, columns, and rows ahdmthe content.

Ramel and colleagues [5] developed a method for detectidreatraction of the
graphic lines. To deal also with tables with no or little gnapmarks they utilize the
regularities of the text elements alone. They describe &pgiroach as a top-down study
of regularities, whereas first the global configuration efltiiocks of text are examined,
then more local characteristics (alignment, spacing)aiert into account, and finally
the lines of text are studied.

Pinto and colleagues [11] presented a model of table eidrathat utilizes both
content and layout of tables by using conditional randord$i¢CRFs). CRFs are undi-
rected graph models that can be used to calculate condiponlability of values on
designated input nodes. Pinto and colleagues first labéllescof a document with a
tag (non-extraction label, header label, data row labetica label). Then they describe
features used by a heuristic table extractor. They used GR&ause CRFs support the
use of many rich and overlapping layout and language fesitéfer a training phase
they tested their dataset and achieved good results. Ththegleurrent state of their
model can only locate labels and tag lines but knows nothbwgiithe columns and
cannot distinguish between data cells and header cells.

Although there is some existing work about extraction frobFHiles, there is no
special focus on the extraction of tables. The full versibdobe Acrobat? has a
table extraction feature but it can only extract lucid talterrectly and this only after
the user marks the table. The other existing approaches megrapplicable for our
purposes, because they use to some extent graphical defirfor the extraction. The
usedpdftohtml tool returns only text elements with some attributes and raplgjcal
components at all. Further, we wanted to preserve genenalthe sense of not being
limited to a specific domain, language, or a set of table nmeoefel. Thus, we decided to
develop a heuristic-based approach that works only witHeheattributes of the tool
and nothing else.

5 Conclusion

This paper has presented a method for extracting tablenration by utilizing only the
absolute position of text elements in a file, concretely if-Files. Further, a prototype
was generated in order to evaluate the performance of theasheExperiments on
several PDF documents with 150 tables demonstrated outsesu

2 http://lwww.adobe.com

Based on our evaluation results we can say that our appreafdrms very well on
the table recognition task for lucid and complex tablessPds errors are an unintended
merge of two adjacent tables or erroneous table splits.

Regarding the table decomposition task we can say that qaroaph works very
well on lucid tables. Anyhow, the performance and recalligalon complex tables are
also fairly good. The difference between these results cagaiely from the appearance
of multi-line cells in complex tables. To decide whether twails have to be merged or
not requires some amount of natural language understaadohgur approach does not
handle any language-specific features. Therefore, we dgmake decisions based on
the distance between two cells, which is not always relidble possible that two cells
that have to be merged are not merged by the approach or thadjacent cells are
falsely merged.

Our approach to the extraction of tables in PDF files, is doraad language inde-
pendent. Future work may involve using more statisticahmégues for utilizing regu-
larities in tables in order to achieve better results. Sechiiques could, for example,
help to avoid false-positives in both of the tasks.

References

1. Miller, R.L.: Information engineering: A balanced apacth to information systems require-
ments analysis and design. In: Proceedings of the IEEE haltiderospace and Electronics
Conference. (1995) 672-679

2. Appelt, D.E.: Introduction to information extraction.| &ommunicationsl2 (1999) 161—
172

3. Riloff, E.: Information extraction as a stepping stonedad story understanding. In Ram,
A., Moorman, K., eds.: Understanding Language Understandiomputational Models of
Reading. MIT Press (1999)

4. Yildiz, B.: Information extraction — utilizing table pgatrns. Master’s thesis, Vienna Univer-
sity of Technology (2004)

5. Ramel, J.Y., Crucianu, M., Vincent, N., Faure, C.: Deatsttextraction and representation
of tables. In: Proceedings of the Seventh Internationalf€ence on Document Analysis
and Recognition, Washington DC., IEEE Computer SocietP82®374-378

6. Lehnert, W., Cardie, C., Fisher, D., McCarthy, J., Ril&f, Soderland, S.: Evaluating an
Information Extraction system. Journal of Integrated CatepAided Engineering (1994)

7. Hu, J., Kashi, R.,D., L., G., W.: Evaluating the perforrmaif table processing algorithms.
International Journal on Document Analysis and Recogmiti¢2002)

8. Wang, Y.: Document Analysis: Table Structure Undersitamdnd Zone Content Classifica-
tion. PhD thesis, Washington University (2002)

9. Tupaj, S., Shi, Z., Chang, C., Alam, H.: Extracting tabidormation from text files. Eecs,
Tufts University, Medford (1996)

10. Ng, H., Lim, C., Koo, J.: Learning to recognize tablesrigeftext. In: Proceedings of the
37th Conference on Association for Computational Lingcsst(1999) 443-450

11. Pinto, D., McCallum, A., Wei, X., Bruce, W.: Table exttian using conditional random
fields. In: Proceedings of the 26th ACM SIGIR. (2003)

